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Critical questionsCritical questionsCritical questions

What are the PEN stresses as a function of 
boundary stiffness during steady state or transient 
conditions?
What are the cell edge displacements as a function 
of PEN stresses?
What are the effects of stack B.C.s on stresses?
What is the state of stress and displacement in the 
seal area?
How does a dead load distributes throughout the 
stack, especially sealing areas?
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PEN Stresses during Steady State as a 
function of Boundary Compliance

PEN Stresses during Steady State as a PEN Stresses during Steady State as a 
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PEN Stresses during Transient State as a 
function of Boundary Compliance

PEN Stresses during Transient State as a PEN Stresses during Transient State as a 
function of Boundary Compliancefunction of Boundary Compliance
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Pure Shear and Axial LoadingPure Shear and Axial LoadingPure Shear and Axial Loading

E (GPa) nu G (GPa) K/L Shear  K/L Axial K shear K axial

YSZ 175 0.3 67.30769 1.7E+12 7.0E+09 1E+10 4E+07

Steel 120 0.3 46.15385 1.2E+12 4.8E+09 7E+09 3E+07

Glass 9 0.3 3.461538 8.7E+10 3.6E+08 5E+08 2E+06

Nylon 1.7 0.3 0.653846 1.6E+10 6.8E+07 1E+08 4E+05

Rubber 0.002 0.3 0.000769 1.9E+07 8.0E+04 1E+05 5E+02
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Cell Edge Displacement
During Steady State

Cell Edge DisplacementCell Edge Displacement
During Steady StateDuring Steady State
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Cell Edge Displacement During Transient 
Loading

Cell Edge Displacement During Transient Cell Edge Displacement During Transient 
LoadingLoading
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Thermal-Structural Stress Analysis:
Influence of Design Variables on Cell 

Stresses

ThermalThermal--Structural Stress Analysis:Structural Stress Analysis:
Influence of Design Variables on Cell Influence of Design Variables on Cell 

StressesStresses
Effect of Mesh Stiffness on Cell Stresses
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Stiffness = 1%)
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A more compliant 
mesh material 
generally increased 
the stresses in both 
the anode and the 
plate. 

Addition of fold 
reduced the anode 
stress significantly 
and the plate stresses 
slightly.

(Note: Fold reduces 
the active area of 
PEN)

Mesh Stiffness Fold Size (rigid+compliance in fold) 

Effect of Separator Plate Thickness on Cell 
Stresses
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Reduced stiffness for 
the glass increased 
plate stresses. 

Reduced glass 
stiffness also reduced 
anode stress in 
designs w/ a fold, but 
increased anode stress 
in designs w/o a fold. 
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Glass Stiffness Separator Plate Thickness 
A thicker separator 
plate decreased the 
stresses in both the 
anode and the plate.

(Note: Thicker plate 
gives slower thermal 
response for start-up)
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Thermal-Structural Stress Analysis:Thermal
Influence of Design Variables on Cell 

Stresses

Thermal--Structural Stress Analysis:Structural Stress Analysis:
Influence of Design Variables on Cell Influence of Design Variables on Cell 

StressesStresses
PEN Aspect Ratio CTE 

Lower coefficient of 
thermal expansion 
(CTE) for 446 
stainless steel 
significantly reduced 
anode and plate 
stresses.

A rectangular PEN 
had lower stresses 
than a square PEN 
during start-up. 
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Model B.C.’s 
The stack stiffness can 
be accounted for with 
boundary conditions. 
The effect of the model 
B.C.’s on stresses was 
found to be dependent 
on the cell design.

Effect of Model Boundary Conditions on 
3_Cell Stack Stresses
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Results 3-Stack SimulationsResults 3Results 3--Stack SimulationsStack Simulations

Anode σ1 
MPa

SS σeqv 
MPa

1% (A) Bottom 24 370
Top 22 547

0.001%  (D) Bottom 49.6 313
Top 32.4 609

0.001%  (E) Bottom 56.4 410
Simple BC Top 33.8 585

0.001%  (F) Bottom 52.5 326
10% glass Top 28.9 617

Will the stack survive thermal 
stresses? (based on stress/strength 
failure criteria)

What is the effect of out of plane 
stiffness?

Will softer glass reduce stresses?
How do the B.C.’s change stress 

profiles?
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1- Cell Stack (Picture Frame)11-- Cell Stack (Picture Frame)Cell Stack (Picture Frame)
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Seal Temperature Profile and PEN out-
Plane Deformation

Seal Temperature Profile and PEN outSeal Temperature Profile and PEN out--
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Seal DeformationsSeal DeformationsSeal Deformations
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Displacement Components in SealDisplacement Components in SealDisplacement Components in Seal
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Seal – Principal StressesSeal Seal –– Principal StressesPrincipal Stresses
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Seal- Shear StressesSealSeal-- Shear StressesShear Stresses
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Seal Stress - Maximum Principal
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Seal Stress - Parallel to PEN Edge
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Seal Stress - Out of Plane
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Seal Shear Stress - InPlane
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Seal Shear Stress - Tangent to PEN Edge

-7.0E+05

-6.0E+05

-5.0E+05

-4.0E+05

-3.0E+05

-2.0E+05

-1.0E+05

0.0E+00

1.0E+05

2.0E+05

3.0E+05

0.0E+00 2.0E-02 4.0E-02 6.0E-02 8.0E-02 1.0E-01 1.2E-01

Path length (m)

Se
al

 S
tr

es
s,

 P
a

Side 1
Side 2
Side 3
Side 4

1

2

3

4

Air

Fuel



22

Seal Shear Stress - Normal to PEN Edge
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Load Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell Stack
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Load Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell Stack
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Load Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell Stack
Average Load for PEN Seals as a Function of Interconnect Stiffness
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Load Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell Stack
Average Load for Stack Seals as a Function of Interconnect Stiffness
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Load Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell Stack
Stack Loads for Interconnect Stiffness of 1e8
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Load Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell Stack
Stack Loads for Interconnect Stiffness of 1e10
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Load Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell StackLoad Paths for Multiple Planar Cell Stack

This chart tries to relate the 
"stiffness" used in the model 
for the cathode and anode 
mesh to a modulus. This will 
help give a feel for what these 
stiffnesses actually mean.

The stiffness K is actually 
stiffness per unit area, so K*t 
where t is the spring length 
(thickness) would give the 
effective modulus for the 
interconnect material if it was 
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